Constant dimension codes from Riemann-Roch spaces

نویسندگان

  • Daniele Bartoli
  • Matteo Bonini
  • Massimo Giulietti
چکیده

Some families of constant dimension codes arising from Riemann-Roch spaces associated to particular divisors of a curve X are constructed. These families are generalizations of the one constructed by Hansen [7].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Representations of finite groups on Riemann-Roch spaces

We study the action of a finite group on the Riemann-Roch space of certain divisors on a curve. If G is a finite subgroup of the automorphism group of a projective curve X over an algebraically closed field and D is a divisor on X left stable by G then we show the irreducible constituents of the natural representation of G on the Riemann-Roch space L(D) = LX(D) are of dimension ≤ d, where d is ...

متن کامل

Riemann-Roch Spaces and Linear Network Codes

We construct linear network codes utilizing algebraic curves over finite fields and certain associated Riemann-Roch spaces and present methods to obtain their parameters. In particular we treat the Hermitian curve and the curves associated with the Suzuki and Ree groups all having the maximal number of points for curves of their respective genera. Linear network coding transmits information in ...

متن کامل

Multi-point Codes from the GGS Curves

This paper is concerned with the construction of algebraic geometric codes defined from GGS curves. It is of significant use to describe bases for the Riemann-Roch spaces associated to some totally ramified places, which enables us to study multi-point AG codes. Along this line, we characterize explicitly the Weierstrass semigroups and pure gaps by an exhaustive computation of the basis for Rie...

متن کامل

Riemann-roch Spaces of the Hermitian Function Field with Applications to Algebraic Geometry Codes and Low-discrepancy Sequences

This paper is concerned with two applications of bases of Riemann-Roch spaces. In the first application, we define the floor of a divisor and obtain improved bounds on the parameters of algebraic geometry codes. These bounds apply to a larger class of codes than that of Homma and Kim (Goppa codes with Weierstrass pairs, J. Pure Appl. Algebra 162 (2001), 273-290). Then we determine explicit base...

متن کامل

Explicit bases for Riemann-Roch spaces of the extended norm-trace function field, with applications AG codes and Weierstrass semigroups

The extended norm-trace function field is a generalization of the Hermitian and norm-trace function fields which are of importance in coding theory. In this paper, we provide explicit bases for certain Riemann-Roch spaces on the extended norm-trace function field. These bases provide explicit generator and parity check matrices for algebraic geometry codes CL ( D, aP∞ + ∑ β∈B aβP0β ) on the ext...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1508.01727  شماره 

صفحات  -

تاریخ انتشار 2015